
Recent widespread outbreaks of PPRS in China were 
associated with a novel NADC30-like strain of PPRSV. 
Whole genomic analysis showed that the strain differed 
from previously identified PRRSV strains in China, but had 
an overall genetic similarity and a unique deletion in the 
NSP2-coding region that was identical to that of NADC30, 
which originated in the United States. We propose that the 
NADC30 strain was introduced into China in recent years 
by importing of breeding pigs and has since undergone mu-
tations, resulting in variant viruses.
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To the Editor: Although a diverse population of 
influenza A viruses (IAVs) is maintained among ducks, 
geese, shorebirds, and gulls, not all of the 16 avian  
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Figure. Phylogenetic analysis of whole genomes of porcine 
reproductive and respiratory syndrome virus (PRRSV) CHsx1401 
(triangle) (GenBank accession no. KP861625); representative 
prototype strain VR-2332 (U87392); isolates BJ-4 (AF331831), 
CH-1a (AY032626), HB-1(sh)/2002 (AY150312), and HB-
2(sh)/2002 (AY262352) from China; highly pathogenic strains 
JXA1 (EF112445), JXwn06 (EF641008), and HUN4 (EF635006); 
strains MN184A (DQ176019), MN184B (DQ176020), MN184C 
(EF488739), and NADC30 (JN654459) from the United States; 
and recent strains HENAN-HEB (KJ143621) and HENAN-XINX 
(KF611905) from China. Prototype Lelystad virus (M96262) was 
used as the outgroup. The phylogenetic tree was constructed 
by using the distance-based neighbor-joining method with 1,000 
bootstrap replicates in MEGA6 (http://www.megasoftware.
net/). Numbers along branches are bootstrap values. Scale bar 
indicates nucleotide substitutions per site.



hemagglutinin (HA) subtypes are equally represented (1). 
The 14th HA subtype, commonly known as the H14 sub-
type, was historically limited to isolates from the former 
Soviet Union in the 1980s (2) and was not subsequently 
detected until 2010, when isolated in Wisconsin, USA 
from long-tailed ducks and a white-winged scoter (3–5). 
In the United States, the H14 subtype has since been iso-
lated in California (6), Mississippi, and Texas (7); and 
has been reported in waterfowl in Guatemala (7). In this 
study, we examined whether there was serologic evidence 
of H14 spread among ducks in North America before 
(2006–2010) and after (2011–2014) the initial detection 
of the H14 subtype virus on this continent. 

This report was reviewed and approved by United 
States Geological Survey under the Fundamental Sci-
ence Practices policy (http://www.usgs.gov/fsp/). Serum 
samples from blue-winged teal, American green-winged 
teal, and mallard ducks were screened by using block-
ing ELISA (FlockCheck AI MultiS-Screen antibody 
test kit; IDEXX Laboratories, Westbrook, ME, USA) to 
detect antibodies against the influenza virus nucleopro-
tein. Positive samples were tested by microneutraliza-
tion assays as described (7) against viruses representing  
H14 and H3 subtypes. H3 is commonly detected in  
ducks found in North America (8) (online Technical 
Appendix Table 1, http://wwwnc.cdc.gov/EID/article/ 
21/12/15-0413-Techapp1.pdf).

Antibodies against H3 were detected during 2006–
2014 in Michigan, Minnesota, New Jersey, Texas, and 
Louisiana (Table); titers ranged from 20 to 320. Antibod-
ies against H14 were detected in 1 duck in 2007 and in 

24 ducks sampled in 2012 after August. H14 antibodies 
were detected in all years and most locations studied after 
2012; antibody titers ranged from 20 to 160. Thus, antibody 
prevalence was consistent with the relative prevalence of 
H3 reported among ducks in North America (1,4,8) and the 
timing of initial detection of H14 viruses.

To address the possibility of cross-neutralizations be-
tween HA subtypes, we tested the 2007 H14-positive serum 
samples and 22 of the H14-positive serum samples from 
2012–2014 against HA subtypes 1–12 (online Technical 
Appendix Table 1) by virus neutralization (online Techni-
cal Appendix Table 2). Among humans, broadly neutral-
izing antibodies within HA groups targeting conserved 
regions in the HA stalk have been described (9), and if 
present in samples from mallards, these could contribute 
to cross-neutralizations. The H14-positive serum samples 
from 2007 reacted to subtypes H3, H4, H7, and H11, and 
high titers were identified for H3 and H4, which are with-
in the same clade. Samples from 17 of these birds tested 
antibody-positive for additional HA subtypes and 5 tested 
positive only to H14. An H14 virus was recovered by vi-
rus isolation from the same blue-winged teal population 
sampled in March 2013, from which serum samples were 
obtained (7); however, although H14 antibodies have been 
detected in Minnesota, an H14 virus has not yet been iso-
lated in that state.

Our serologic results are temporally consistent with 
H14 isolation reports and suggest that H14 subtype vi-
ruses were not circulating among ducks in North America 
before initial virus isolation. However, there are poten-
tial challenges with serologic-based investigations. For 
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Table. H3 and H14 microneutralization assay data from ducks sampled during 2006–2014, North America* 
Year Month of sampling State Species No. H3N8, no. (%) H14N5, no. (%) 
2006 Aug Michigan Mallard 29 6 (21) 0 

 Aug/Sep Minnesota Mallard 39 3 (8) 0 
2007 Aug/Sep Minnesota Mallard 46 8 (17) 1 (2) 
2008 Aug/Sep Minnesota Mallard 44 8 (18) 0 
2009 Aug/Sep Minnesota Mallard 29 10 (34) 0 

 Aug New Jersey Domestic and wild mallard 36 1 (3) 0 
2010 Aug/Sep Minnesota Mallard 29 6 (21) 0 

 Aug New Jersey Domestic and wild mallard 20 5 (25) 0 
2011 Aug/Sep Minnesota Mallard 124 37(30) 0 
2012 Feb/Mar Texas Blue-winged teal 19 3 (16) 0 

 Aug/Sep Minnesota Mallard 188 11 (6) 2 (1) 
2013 Feb/Mar Texas/Louisiana Blue-winged teal 120 13 (11) 12 (10) 

 Feb/Mar Texas/Louisiana American green-winged teal 91 5 (5) 2 (2) 
 Aug/Sep Minnesota Mallard 65 8 (12) 7 (11) 

2014 Feb/Mar Texas Blue-winged teal 22 1 (5) 1 (5) 
 Sep Minnesota Mallard 41 4 (10) 0 

Totals       
 2006–2010 NA NA All ducks 272 47 (17) 1 (0.3) 
  NA NA Mallards only 272 47 (17) 1 (0.3) 
 2011–2014 NA NA All ducks 670 82 (12) 24 (3.5) 
 NA NA Mallards only 418 60 (14) 9 (2.1) 
 NA NA Blue-winged teal and 

American green-winged teal 
252 22 (9) 15 (6) 

*NA, not applicable. 

 
 



example, the overall prevalence of H14 antibodies after 
the initial detection of H14 viruses (2011–2014) was low 
(3.5% of blocking ELISA positive samples), thus requir-
ing a large sample size (n = 670) for H14 antibody detec-
tion. However, an even lower prevalence was observed 
by using virus isolation; we isolated only 1 H14 IAV  
during parallel sampling of these sites (n = 8,875) during 
2011–2014.

Differences in pre- and post-H14 detection also var-
ied between species, location, and season. Differences 
in H14 antibody prevalence were observed in all ducks 
sampled pre- and post- (0.3%–3.5%, p = 0.0103) H14 de-
tection, but not in the mallard-only subset (0.3%–2.1%, p 
= 0.0963). A significant difference in seroprevalence also 
was detected between species (mallard [2%] vs teal [6%]) 
in the 2011–2014 samples (p = 0.0104). IAV show strong 
seasonal patterns in prevalence, and the observed differ-
ences in antibodies may be associated with the probability 
of IAV infection before sampling and the persistence of 
antibody responses in these species. Mallards (primarily 
hatch-year birds) were sampled at the beginning of fall 
migration (≈3–4 months of potential IAV exposure for 
hatch-year birds), whereas teal were sampled later, dur-
ing spring migration (≈9–10 months of potential IAV 
exposure for birds hatched the previous spring or sum-
mer). It is apparent that the sampling approach used can  
affect results.

Interpretation of subtype-specific serologic data can 
be complex, especially in birds that are normally infected 
with several IAV subtypes during their lives. Nevertheless, 
this study demonstrates the value of a subtype-specific se-
rologic approach to detect even relatively minor changes in 
subtype diversity and clearly shows that new viruses can 
establish in duck populations in North America. Serologic 
techniques also can be optimized to detect incursions of 
novel viruses such as the highly pathogenic Eurasian H5 
viruses (10) among wild birds.
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